Ontology-driven, unsupervised instance population

نویسندگان

  • Luke K. McDowell
  • Michael J. Cafarella
چکیده

for m ntent iven” en on ng on ts. On the o nform atica ed, un esult cted t that prob rank the s

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instance Based Lexical Entailment for Ontology Population

In this paper we propose an instance based method for lexical entailment and apply it to automatic ontology population from text. The approach is fully unsupervised and based on kernel methods. We demonstrate the effectiveness of our technique largely surpassing both the random and most frequent baselines and outperforming current state-of-the-art unsupervised approaches on a benchmark ontology...

متن کامل

Ontology-Driven Information Extraction with OntoSyphon

The Semantic Web’s need for machine understandable content has led researchers to attempt to automatically acquire such content from a number of sources, including the web. To date, such research has focused on “document-driven” systems that individually process a small set of documents, annotating each with respect to a given ontology. This paper introduces OntoSyphon, an alternative that stri...

متن کامل

Unsupervised Ontology Population Using Latent Semantic Analysis

A large ontology such as lexical ontology is useful as the basic knowledge base in artificial intelligence and computational linguistics application. However, it is insufficient to recognize only existing instances for each concept. Adding new instances into the lexical ontology will expand knowledge in the system. In this paper, we propose an efficient unsupervised ontology population system t...

متن کامل

Incremental Ontology-Based Extraction and Alignment in Semi-structured Documents

SHIRI 1 is an ontology-based system for integration of semistructured documents related to a specific domain. The system’s purpose is to allow users to access to relevant parts of documents as answers to their queries. SHIRI uses RDF/OWL for representation of resources and SPARQL for their querying. It relies on an automatic, unsupervised and ontology-driven approach for extraction, alignment a...

متن کامل

Contextual Hierarchy Driven Ontology Learning

Research in ontology learning had always separated between ontology building and evaluation tasks. Moreover, it had used for example a sentence, a syntactic structure or a set of words to establish the context of a word. However, this research avoids accounting for the structure of the document and the relation between the contexts. In our work, we combine these elements to generate an appropri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Web Sem.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008